Stabilisation of 2-nitrophenyl-selenosulfide, -diselenide and -thioselenide ions in *N*,*N*-dimethylacetamide

Abdelkader Ahrika, Jacques Auger and Jacky Paris*

Laboratoire de Physicochimie des Interfaces et des Milieux Réactionnels, UFR Sciences et Techniques, Parc de Grandmont, 37200 Tours, France. E-mail: paris@univ-tours.fr

Letter

Received (in Montpellier, France) 28th April 1999, Accepted 27th May 1999

The direct addition of sulfur or selenium to 2-nitrophenyl selenide ions (ArSe $^-$) in N,N-dimethylacetamide leads to the formation of ArSeS $^-$ or ArSe $_2$ $^-$ species, which have been characterized by UV-vis spectrophotometry coupled with volammetry. The nucleophilic substitution of benzyl bromide by ArSeS $^-$ ions yields selenenyl sulfide ArSeSCH $_2$ Ph as the major product.

Only a few synthetic preparations have been reported for selenenyl sulfides RSeSR'; these are based on the one hand, on the reactions between selenenyl bromides RSeBr and thiols R'SH, and on the other hand, on the exchange reactions between diselenides RSe₂R and disulfides R'S₂R'.² Naturally occurring compounds of this class, which were recently identified in Allium volatiles³ (R = Me; R' = Me, allyl, prop-1-ene) attract considerable attention because of their possible anticarcinogenic properties.^{3,4} An easier access would be provided from the precursor RSeS⁻ or R'SSe⁻ ions, whose generation can be conceived as a RS2- one in aprotic dipolar media, from the direct addition of sulfur to thiolate ions.⁵ In polar organic media insertions of S-S bonds in organic substrates notably result from cathodic⁶ or anodic⁷ activation of sulfur into S_x^{2-} polysulfides and S^{2+} ions, respectively, whereas thiolates and selenolates are clearly obtained by electrochemical reduction of RS₂R⁵ and RSe₂R⁸ species.

We report here on a potential route to RSes $^-$ and RSe $_2^-$ ions using the reactions of sulfur and selenium towards colored 2-NO $_2$ C $_6$ H $_4$ Se $^-$ ions (ArSe $^-$) as a model. The studies were carried out in N_s N-dimethylacetamide (DMA) at 20 °C by UV-vis absorption spectrophotometry coupled with voltammetry at a gold rotating disc electrode.

In DMA sulfur reacts with RS⁻ ions in two parallel ways:⁵ (i) preponderant and successive formation [eqn. (1)] of RS_x⁻ ions (R = alkyl, x = 2-5; R = aryl, x = 2-4) by S-nucleophilic processes^{5,9} and (ii) weak oxidation [eqn. (2)] leading to RS₂R and polysulfide ions:

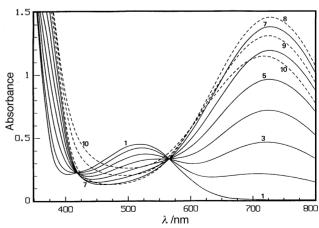
$$2RS_{x-1} + S_2 \rightarrow 2RS_x^-$$
 (1)

$$2RS^{-} + S_8 \rightarrow RS_2R + S_8^{2-}$$
 (2)

We suggested that processes such as those in eqn. (1) could involve the reactive S_2 molecules in equilibrium with cyclic S_8 . The addition of sulfur to the more stabilized 2-nitrophenyl sulfide ions (ArS $^-$, $\lambda_{\rm max}=502$ nm) led to the formation of ArS $_2$ $^-$ ions only 5,10 ($\lambda_{\rm max}=681$ nm) [eqn. (3)], without significant oxidation, as in eqn. (2).

$$2ArS^{-} + S_{2} \rightleftharpoons 2ArS_{2}^{-}$$
 (3)

Seventy-five percent ArS_2^- ions were obtained at the stoichiometry $[ArS^-]_0 = 8[S_8]_0 = 2.0 \times 10^{-3}$ mol dm⁻³. 2-Nitrophenyl selenolate anions were obtained at initial concentrations $[ArSe^-]_0 \le 4.2 \times 10^{-3}$ mol dm⁻³ by controlled potential electrolysis† at a large gold grid electrode


[E=-1.0~V~vs. the reference Ag/AgCl, KCl sat. in DMA/N(Et)₄ClO₄ = 0.1 mol dm⁻³] of the corresponding diselenide Ar₂Se₂ [half-wave potential $E_{1/2}(R) = -0.69~V$, $\lambda_{\rm max} = 378~{\rm nm},~\epsilon_{378} = 7300~{\rm dm}^3~{\rm mol}^{-1}~{\rm cm}^{-1}$], which was prepared as previously reported. Fig. 1 shows the dependence of the UV-vis spectrum on the addition of a concentrated solution of sulfur to an initial solution of 2-nitrophenyl selenolate ions at various ratios $y = [S]_{\rm ad}/[{\rm ArSe}^-]_0$, with added sulfur noted as $[S]_{\rm ad} = 8[S_8]$. The maximal absorbances of red ArSe⁻ ions at 520 nm ($\epsilon_{520} = 1200~{\rm dm}^3~{\rm mol}^{-1}~{\rm cm}^{-1}$) and 315 nm ($\epsilon_{315} = 14500~{\rm dm}^3~{\rm mol}^{-1}~{\rm cm}^{-1}$) decrease to the benefit of two new bands (ArSeS⁻, $\lambda_{\rm max1} = 728~{\rm nm}$, $\lambda_{\rm max2} = 340~{\rm nm}$) with the occurrence of three isosbestic points ($\lambda_{\rm is} = 565$, 418 and 347 nm). For y < 0.70 (curves 1–6), the consumption of ArSe⁻ ions, $\Delta[{\rm ArSe}^-]/[S]_{\rm ad}$, remains in a proportion of -1:1, and then progressively slows down (curves 7,8) in agreement with eqn. (4) and as observed in the course of reaction (3) leading to ArS₂⁻ ions:¹⁰

$$2ArSe^{-} + S_{2} \rightleftharpoons 2ArSeS^{-}$$
 (4)

At the stoichiometric value y=1, 85% of ArSe⁻ ions have been converted into blue ArSeS⁻ ions. Subsequent additions of sulfur (curves 9,10) result in a small oxidation of ArSe⁻/ArSeS⁻ ions [eqn. (5)] with the appearance of S₈²⁻ ions (increase of their maximal visible absorbance at 515 nm⁶ at the expense of A_{728} , $\lambda_{is} = 600$ nm) and of S₈ in excess, which is detected by its first bielectronic reduction (R) wave⁶ [$E_{1/2}(R) = -0.40$ V]:

$$2 \operatorname{ArSe}^{-} + \operatorname{S}_{8} \rightleftharpoons \operatorname{Ar}_{2} \operatorname{Se}_{2} + \operatorname{S}_{8}^{2}$$
 (5)

Despite its insolubility in DMA, elemental selenium reacts with ArSe⁻ ions in a way similar to sulfur. The progressive

Fig. 1 Dependence of the UV-vis spectrum on the addition of sulfur $(8.6 \times 10^{-3} \text{ mol dm}^{-3})$ to a solution (40 cm^{3}) of 2-nitrophenyl selenolate ions $[\text{ArSe}^{-}]_{0} = 3.60 \times 10^{-3} \text{ mol dm}^{-3}$: $y = [\text{S}]_{\text{ad}}/[\text{ArSe}^{-}]_{0} = 0$ (1), 0.12 (2), 0.26 (3), 0.40 (4), 0.55 (5), 0.69 (6), 0.84 (7), 0.99 (8), 1.22 (9), 1.70 (10). Thickness of the cell = 0.1 cm, scan rate = 1000 nm min $^{-1}$.

addition of definite quantities of Se powder (Aldrich, 100 mesh) to ArSe $^-$ solutions entails the quantitative formation [eqn. (6)] of ArSe $_2^-$ (A[ArSe $_2^-$]/[Se $_{ad}$] = 1 : 1 up to y = 1). A_{520} (ArSe $_2^-$) evolves into A_{728} and A_{354} (ArSe $_2^-$) through two isosbestic points at 565 and 442 nm:

$$ArSe^{-} + Se \rightarrow ArSe_{2}^{-}$$
 (6)

The rate of this process is that of the dissolution of reacting Se (see below), which occurs within 3 h for the initial conditions $[ArSe^-]_0 = [Se]_0 = 4.25 \times 10^{-3} \text{ mol dm}^{-3}$, without any observed oxidation of $ArSe_2^-$.

In DMA, RSe⁻ ions (R = $C_6H_5CH_2$, C_6H_5) mainly reduce sulfur into polysulfide ions (results to be published) whereas RS⁻ ions mainly yield RS_x⁻ species,⁵ according to the competing reactions (1) and (2). The formation of ArSeS⁻ and ArSe₂⁻ ions can be explained by a lowered redox reactivity of 2-nitrophenylselenide ions with respect to RSe⁻ ones, due to a higher stabilization of the former anionic species. RS⁻ ions are less reactive species than RSe⁻ towards alkyl halides;¹² analogously, the conversion of 2-NO₂C₆H₄S⁻ ions (λ_{max} = 502 nm) into ArSSe⁻ ions (λ_{max} = 666 nm, λ_{is} = 548 nm) in the presence of excess selenium only attains 20%.

From the addition of traces of sulfur to $ArSe^-$ ions, the oxidation (O) wave of the latter $[E_{1/2}(O) = +0.16 \text{ V}]$ totally shifts to less anodic potentials without change in its limiting current, as shown with thiolate ions;⁵ as an example $\Delta E_{1/2}(O) = -0.25 \text{ V}$ for $y = [S]_{ad}/[ArSe^-]_0 = 1$. This is explained by the electrocatalytic mechanism in reactions (7)–(9), which implies the fast formation of $ArSeS^-$ ions [eqn. (8)] and their electrooxidation [eqn. (9)] into Ar_2Se_2 (with release of sulfur) at a rate greater than that of $ArSe^-$ ions [eqn. (7)]:

$$2ArSe^{-} - 2e^{-} \rightarrow Ar_{2}Se_{2} \tag{7}$$

$$2ArSe^{-} + S_2 \rightarrow 2ArSeS^{-}$$
 (8)

$$2ArSeS^{-} - 2e^{-} \rightarrow Ar_2Se_2 + S_2 \tag{9}$$

This scheme is confirmed by the exhaustive oxidation of ArSeS – solutions at controlled potential (E=+0.2 V), affording recovery of the initially added sulfur [$E_{1/2}(R)=-0.40$ V] and of Ar₂Se₂ [$E_{1/2}(R)=-0.69$ V; $\lambda_{\rm max}=378$ nm]. Although 3 h are required to quantitatively obtain ArSe₂ – according to eqn. (6), the shift of the oxidation wave of ArSe₂ – is immediately observed after the addition of solid selenium, as soon as traces of ArSe₂ – have been generated. The electrocatalytic process, which is analogous to that of eqns. (7)–(9), leads to Ar₂Se₂ by electrolysis of ArSe₂ – (E=0.0 V), with deposition of Se on the large gold grid electrode. The spectroelectrochemical characteristics of ArSeS –, ArSe₂ – and ArSSe – ions have been summarized in Table 1.

 ${\rm ArS_2}^-$ ions are better nucleophilic agents than the corresponding thiolates towards alkyl halides. This α -effect could be connected with the enhanced rate of electronic

Table 1 Spectrophotometric and electrochemical characteristics of ArSes $^-$, ArSe $_2$ $^-$, ArSse $^-$ and ArS $_2$ $^-$ ions (Ar = 2-NO $_2$ C $_6$ H $_4$) in N,N-dimethylacetamide at 20 °C. $E_{1/2}$ at a rotating gold disc electrode vs. reference Ag/AgCl, KCl sat. in DMA/N(Et) $_4$ ClO $_4$ 0.1 mol dm $^{-3}$

ArXY ⁻	λ_{max}/nm	$\epsilon_{max}/dm^3~mol^{-1}~cm^{-1}$	$-\Delta E_{1/2}({\rm O})/{\rm V}^a$
ArSeS -	728	4900	0.25
	340	6100	
ArSe ₂	728	3200	0.41
-	354	5800	
$ArSSe^-$	666	5000	0.68
ArS_2^{-b}	681	5200	0.50
-	362	6000	

 a $\Delta E_{1/2}({\rm O})=E_{1/2}({\rm ArXY}^-)-E_{1/2}({\rm ArX}^-)$ for y=1 with $E_{1/2}$ (ArSe $^-)=+0.16$ V and $E_{1/2}$ (ArS $^-)=+0.55$ V. b Values determined previously.

exchange with the electrode material for reducing ions ${\rm ArS}_2^-$, ${\rm ArSSe}^-$, ${\rm ArSe}_2^-$ and ${\rm ArSeS}^-$ with respect to ${\rm ArS}^-$ and ${\rm ArSe}^-$. Here again, the addition of alkyl iodides or bromides to the previous dilute solutions of ${\rm ArSeS}^-$ or ${\rm ArSe}_2^-$ readily yields the presumed species ${\rm ArSeSR}$ and ${\rm ArSe}_2R$, without any recovery of sulfur or solid selenium. The products are distinguished by their bielectronic reduction waves and their maximal absorbances: ${\rm ArSeSPr}$: $E_{1/2}(R) = -0.76$ V, $\lambda_{\rm max} = 385$ nm, $\varepsilon_{385} = 3400$ dm³ mol $^{-1}$ cm $^{-1}$; ${\rm ArSe}_2{\rm Pr}$: $E_{1/2}(R) = -0.77$ V, $\lambda_{\rm max} = 380$ nm, $\varepsilon_{382} = 4600$ dm³ mol $^{-1}$ cm $^{-1}$.

The alkylation of a blue solution of ArSeS⁻ ions with benzyl bromide was run at a preparative scale.‡ RSeSR' species are known to be unstable compounds that evolve by disproportionation [eqn. (10)]:^{1b,2}

$$2RSeSR' \rightleftharpoons RSe_2R + R'S_2R' \tag{10}$$

The crude solid product was thus immediately analyzed by 1H NMR and GC/MS. The composition of the mixture: ArSeSCH₂Ph (60%), (PhCH₂S)₂ (12%), Ar₂Se₂ (12%) and ArSeCH₂Ph (16%, close to the initial proportion ArSe⁻: ArSeS⁻ = 0.15) was determined from δ_H (s, CH₂) by comparison with those of commercial dibenzyl disulfide (δ_H = 3.59) and of a synthetic sample of ArSeCH₂Ph (ArSe⁻ + PhCH₂Br). Thus the nucleophilic reaction of ArSeS⁻ ions with benzyl bromide yields the expected selenenyl sulfide ArSeSCH₂Ph, which partly disproportionates (30%) according to eqn. (10).

Studies are currently being extended to the formation of $RSSe_x^-$ (R = alkyl, $1 \le x \le 3$) and RSe_y^- (2 $\le y \le 4$) ions, from alkane thiolates or selenolates and selenium in dipolar aprotic medium.

Notes and references

 \dagger All of the equipment and the flow-through cell have been previously described. The spectroelectrochemical experiments were carried out with 0.1 mol dm $^{-3}$ tetraethylammonium perchlorate as supporting electrolyte.

‡ $\rm Ar_2Se_2$ (1.12 g, 2.78 mmol) in DMA (120 cm³) was reduced into aryl selenolate ions by controlled potential coulometry ($E=-1.1~\rm V$) in a two-compartment cell in the presence of 0.5 mol dm⁻³ N(Et)₄ClO₄. The ArSe⁻ solution (electrical yield 88%) was stirred with solid sulfur (0.135 g, 4.2 mmol S; S: ArSe⁻ = 0.85) at 40 °C for 15 min. PhCH₂Br (4.9 mmol) in DMA (10 cm³) was then added dropwise at room temperature up to the decoloration of the solution. The products (1.18 g) were extracted with diethyl ether. Recovered Ar₂Se₂ (0.23 g), which gave no GC signal, was separated in the last fraction to be obtained by column chromatography of the mixture (silica gel, CH₂Cl₂-Et₂O = 1:1).

ArSeSCH₂Ph: m/z 324 (M⁺, 4%) and 91 (100); $\delta_{\rm H}$ (200 MHz, CDCl₃) 4.03 (s, 2H).

ArSeCH₂Ph: mp 95–96 °C: m/z 292 (M⁺, 4%) and 91 (100); $\delta_{\rm H}$ (200 MHz, CDCl₃) 4.20 (s, 2H), 7.27–7.68 (m, 8H), 8.36 (dd, 1H, J 8.3 and 1.3 Hz).

Ar₂Se₂: mp 215–216 °C (lit. 11 220 °C); $\delta_{\rm H}$ (200 MHz, CDCl₃) 7.35–7.55 (m, 4H), 7.89 (dd, 2H, J 8 and 1.6 Hz), 8.34 (dd, 2H, J 8 and 1.8 Hz).

- (a) H. Rheinboldt and E. Giesbrecht, *Liebigs Ann. Chem.*, 1950, 198; (b) J. L. Kice and T. W. S. Lee, *J. Am. Chem. Soc.*, 1978, 100, 5094.
- 2 V. A. Potapov, S. V. Amosova, P. A. Petrov, L. S. Romanenko and V. V. Keiko, Sulfur Lett., 1992, 15, 121.
- 3 X.-J. Cai, P. C. Uden, E. Block, X. Zhang, B. D. Quimby and J. J. Sullivan, J. Agric. Food Chem., 1994, 42, 2081.
- 4 C. Ip, D. J. Lisk and G. S. Stoewsand, *Nutr. Cancer*, 1992, **17**, 279.
- 5 (a) M. Benaïchouche, G. Bosser, J. Paris, J. Auger and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 31; (b) G. Bosser, M. Anouti and J. Paris, ibid., 1996, 1993.
- 6 G. Bosser and J. Paris, New J. Chem., 1995, 19, 391 and references cited therein.
- 7 (a) G. Le Guillanton, D. Elothmani, Q. T. Do and J. Simonet, J. Electrochem. Soc., 1994, **141**, 316; (b) Q. T. Do, D. Elothmani, J. Simonet and G. Le Guillanton, Bull. Soc. Chim. Fr., 1996, **133**, 273.
- 8 M. Genesty, C. Thobie, A. Gauthier and C. Degrand, J. Appl. Electrochem. 1993, 23, 1125.

- 9 A. J. Parker and N. Kharasch, J. Am. Chem. Soc., 1960, 82, 3071. 10 G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Chem. Commun., 1988, 720.
- L. Syper and J. Mlochowski, *Tetrahedron*, 1988, **44**, 6119.
 (a) R. G. Pearson, H. Sobel and J. Songstad, *J. Am. Chem. Soc.*, 1968, **90**, 319; (b) G. Guanti, C. Dell'Erba and D. Spinelli, *Gazz* Chim. Ital., 1970, **100**, 184.
- 13 M. Benïchouche, G. Bosser, J. Paris and V. Plichon, J. Chem. Soc., Perkin Trans. 2, 1990, 1421.
- 14 E. Buncel and S. Hoz, Tetrahedron Lett., 1983, 24, 4777 and references cited therein.

Letter 9/034540